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A B S T R A C T

Advancement in human-robot interaction (HRI) is essential for the development of intelligent robots, but there 
lack paradigms to integrate remote control and tactile sensing for an ideal HRI. In this study, inspired by the 
platypus beak sense, we propose a bionic electro-mechanosensory finger (EM-Finger) synergizing triboelectric 
and visuotactile sensing for remote control and tactile perception. A triboelectric sensor array made of a 
patterned liquid-metal-polymer conductive (LMPC) layer encodes both touchless and tactile interactions with 
external objects into voltage signals in the air, and responds to electrical stimuli underwater for amphibious 
wireless communication. Besides, a three-dimensional finger-shaped visuotactile sensing system with the same 
LMPC layer as a reflector measures contact-induced deformation through marker detection and tracking 
methods. A bioinspired bimodal deep learning algorithm implements data fusion of triboelectric and visuotactile 
signals and achieves the classification of 18 common material types under varying contact forces with an ac-
curacy of 94.4 %. The amphibious wireless communication capability of the triboelectric sensor array enables 
touchless HRI in the air and underwater, even in the presence of obstacles, while the whole system realizes high- 
resolution tactile sensing. By naturally integrating remote contorl and tactile sensing, the proposed EM-Finger 
could pave the way for enhanced HRI in machine intelligence.   

1. Introduction

Advances in human-robot interaction (HRI) bring immense possi-
bilities across diverse domains, such as virtual/augmented reality [1,2], 
healthcare [3], space exploration [4], and smart manufacturing [5]. As 
one of the most dominating yet challenging HRI methods, various tactile 
sensors have been designed based on different mechanical-to-electrical 
conversion mechanisms, such as piezoresistive [6,7], capacitive [8,9], 

magnetic [10,11], etc [12,13]. Meanwhile, visuotactile sensors using 
cameras to capture deformation-induced changes of contact surfaces, 
have emerged as an economical solution towards high-resolution tactile 
sensing [14–18]. However, most of existing tactile sensors cannot 
respond to non-contact stimuli, limiting the prior and accurate acqui-
sition of object size [19], direction [20], and distance [21] during HRI. A 
paradigm to endow tactile sensors with touchless sensing capability is 
heavily desired for an ideal HRI that resembles the natural processes of 

* Corresponding author.
** Corresponding author at: Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore.
*** Corresponding author at: Tsinghua-Berkeley Shenzhen Institute, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.

E-mail addresses: wwlee@tencent.com (W.W. Lee), cwu@nus.edu.sg (C. Wu), ding.wenbo@sz.tsinghua.edu.cn (W. Ding).
1 These authors contributed equally: Shilong Mu, Shoujie Li, Hongfa Zhao 

Contents lists available at ScienceDirect 

Nano Energy 

journal homepage: www.elsevier.com/locate/nanoen 

https://doi.org/10.1016/j.nanoen.2023.108790 
Received 6 August 2023; Received in revised form 13 August 2023; Accepted 14 August 2023   

Full paper 

A platypus-inspired electro-mechanosensory finger for remote control and 
tactile sensing 

Shilong Mu a,1, Shoujie Li a,1, Hongfa Zhao a,1, Zihan Wang a, Xiao Xiao b, Xiao Xiao c,d,e, 
Zenan Lin a, Ziwu Song a, Huaze Tang a, 

 
Qinghao Xu a, Dongkai Wang a, Wang Wei Lee f,*, 

Changsheng Wu d,e,g,**, Wenbo Ding a,h,***

a Tsinghua-Berkeley Shenzhen Institute, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China 
b Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China 
c Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore 
d Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore 
e SIA-NUS Digital Aviation Corporate Lab, National University of Singapore, Singapore 117602, Singapore 
f Tencent Robotics X, Shenzhen 518054, China 
g Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore 
h RISC-V International Open Source Laboratory, Shenzhen 518055, China   

mailto:wwlee@tencent.com
mailto:cwu@nus.edu.sg
mailto:ding.wenbo@sz.tsinghua.edu.cn
www.sciencedirect.com/science/journal/22112855
https://www.elsevier.com/locate/nanoen
https://doi.org/10.1016/j.nanoen.2023.108790
https://doi.org/10.1016/j.nanoen.2023.108790
https://doi.org/10.1016/j.nanoen.2023.108790
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nanoen.2023.108790&domain=pdf


Nano Energy 116 (2023) 108790

2

exploration and manipulation by organisms. 
To this end, multisensory systems for both touchless and tactile 

perception have been developed with single or hybrid mechanisms. 
However, those with single mechanisms, e.g., triboelectric [22–24] or 
magnetic [25,26], are prone to suffer from decoupling touchless and 
tactile signals or interferences from external electric and magnetic fields, 
while those with hybrid ones, e.g., triboelectric and piezoresistive [27], 
optical and barometric [28], often possess limited tactile resolution or 
high cost in materials and fabrication. Moreover, previous reports 
typically have sensing units stacked on planar surfaces in a 
two-dimensional configuration, which can hardly realize omnidirec-
tional perception in space [22,29–31]. In practice, to implement a 
compact, high-resolution, and omnidirectional multisensory system that 
supports both touchless and tactile sensing, remains a formidable chal-
lenge. Fortunately, inspiration from nature has led to the development 
of several smart electrosensory or mechanosensory systems [32–34]. 
Aquatic mammals [35,36], especially the platypus as shown in Fig. 1a, 
have evolved with sensory organs capable of detecting remote stimuli 
from bioelectrical signal and contact stimuli from mechanosensory 
signal [37–39]. Such fusion mechanisms have enabled platypus to hunt 
for prey from the mud in spite of dark waters. 

Herein, inspired by the platypus beak sense, we propose a bionic 
electro-mechanosensory finger (EM-Finger) synergizing triboelectric 
and visuotactile sensing for remote control and tactile perception. 
Similar to how electrosensory nerve terminals help platypus gather 
electrical signal in murky water, the as-prepared triboelectric sensor 

array performs omnidirectional touchless sensing by leveraging the 
electrostatic induction effect and a three-dimensional (3D) finger-like 
structure. High-resolution multimodal tactile perception of contact 
pressure and surface texture is realized by a visuotactile sensor. The 
fusion of triboelectric and visuotactile signals leads to the identification 
of 18 material types under varying forces with an accuracy of 94.4 %, 
which is 67.4 % when only the triboelectric signal is available. Based on 
the designed EM-Finger, we implement an integrated HRI system 
capable of both touchless interaction and multimodal tactile sensing to 
perform remote control and object recognition in the air. The system 
also makes it possible for robots to conduct underwater tasks, including 
electrical stimuli-enabled wireless communication, tactile perception, 
object manipulation, and advances HRI in amphibious intelligent robots. 

2. Results and discussion 

2.1. Bimodal sensory design of EM-Finger 

EM-Finger mimics platypus’s multisensory system through the 
combination of a triboelectric sensor array and a finger-shaped visuo-
tactile sensor. The beak of the platypus contains densely packed arrays 
of specialized receptor organs and their afferent nerves (Fig. 1b). These 
special receptor organs have electrosensory and mechanosensory func-
tions. Specifically, the electroreceptors distributed in the soft dermal 
layer can detect the weak bioelectrical signals related to the muscle 
contraction of the prey, and mechanoreceptors can respond to contact 

Fig. 1. Bioinspired bimodal sensory system. (a) Schematic diagram of a platypus feeding on underwater prey by receptors distributed in its beak. (b) The structure of 
(i) the platypus’s bimodal sensory system and (ii) the bionic electro-mechanosensory finger (EM-Finger). (c) Structure of the soft triboelectric sensor distributed on 
the finger surface. (d) The touchless spatial sensing strategies and the top view of the finger. E1 to E4 represents the electrodes in the triboelectric sensor array. (e) 
Three-dimensional internal lighting structures are mapped to the tactile image. The internal lighting uses a LED ring. The internal image has three markers and is seen 
by a camera with a wild 180-degree field of view (FOV). (f) The data processing framework, which can process triboelectric and visuotactile signals separately and 
then fuse the data to realize the touchless and tactile sensory. 
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stimuli. Touchless and tactile stimuli lead to an increase in receptor cell 
membrane potential, which is then transmitted as impulse signals along 
the afferent nerves to the brain. Therefore, platypus dives with their 
eyes, ears and nose closed most of the time, they probably rely almost 
entirely on electrosensory and mechanosensory functions to locate prey 
and hunt from the mud. 

Herein, the triboelectric sensor array can imitate the electroreceptors 
of the platypus beak to detect electrical stimuli based on electrostatic 
induction. Meanwhile, the visuotactile sensor extracts information from 
contact-induced deformation, corresponding to the numerous 

mechanoreceptors of platypus beak. The triboelectric sensor array is 
fabricated by spraying liquid-metal-polymer conductive (LMPC) ink 
through a mask on a finger-shaped transparent elastomer to form an 
electrode array (Fig. 1c). Then the conductive layer is encapsulated by a 
polydimethylsiloxane (PDMS) dielectric layer to prevent exfoliation and 
oxidation. Here, the LMPC layer simultaneously serves as the electrodes 
of the triboelectric sensor array and the reflector of the visuotactile 
sensor. As illustrated in Fig. 1d, the charge distribution on the electrode 
surface of the triboelectric sensor array is altered by electrostatic in-
duction. This alteration encodes the object movement into multi- 

Fig. 2. Working mechanism and characterization of the EM-Finger. (a) Photograph of the EM-Finger prototype showing its triboelectric sensor array (scale bar: 
1 cm). (b) The working mechanism of the triboelectric sensor. (c) Finite element analysis results of the potential distribution mechanism as the triboelectric layer 
approaches the E1 electrode on the EM-Finger side. The relationship between the motion pattern of the object and the corresponding voltage signal: (d) proximity- 
separation motion, (e) variable approach distance, and (f) spatial perceptibility. (g) Simulation of the potential change when the triboelectric layer contacts the E4 
electrode on the fingertip of the EM-Finger. (h) Voltage waveforms output when the sensor identifies glass, nylon, FEP, Al, and wood. (i) Voltage waveforms are 
output by the sensor when contacting FEP at different pressures. (j) Sensing cycle performance of triboelectric sensor at 10,000 cycles, 3.5 h. (k) Schematic illus-
tration of tactile sensing using a tactile image in the presence of normal and shear forces (FN, FS). (l) The principle of pressure sensing by the markers in the tactile 
image, where D denotes the moved distance and A denotes the normalized changed area. (m) Relationship between the normalized changed area and displacement of 
markers and the force generated by different directions. (n) Photograph of pressing EM-Finger on a pen with a pattern and the corresponding surface texture details 
(scale bar: 3 cm). 
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channel voltage pulses. Wherein, the electrodes in the triboelectric 
sensor array are marked as E1 to E4. The elastomer is mounted on a ring 
with a circular arrangement of red, green, and blue light-emitting diodes 
(RGB LEDs) (Fig. 1e). The application of RGB lighting can increase the 
contrast of images captured by a micro camera, which enables reflects 
more fine-grained deformation of the elastomer[40]. The varying force 
during contact is measured and recorded by tracking the movement of 
the markers on the transparent elastomer tip. Detailed illustrations of 
the mechanical structure and fabrication processes are provided in 
Fig. S1. 

Inspired by platypus’s predation process, we develop a bimodal deep 
learning framework to fuse the triboelectric and visuotactile signals 
simultaneously, as shown in Fig. 1f. At the input side, touchless 
perception carried by the triboelectric signal merges seamlessly with the 
multimodal tactile perception conveyed by visuotactile signal. Such 
fusion could suppress the interference generated during the touchless 
and tactile sensing process. 

2.2. EM-Finger for touchless and tactile interaction 

The EM-Finger has a compact structure, and its size is comparable to 
a human finger. And the photographs of the EM-Finger and its highly 
conductive LMPC pattern are shown in Fig. 2a and Fig. S2. The working 
principle of the triboelectric sensors is based on both contact electrifi-
cation and electrostatic induction. A complete touchless and tactile 
perception process of the triboelectric sensor can be divided into mul-
tiple stages (Fig. 2b). At the initial stage (i), after several repeated 
contacts and separations, the PDMS dielectric layer and the external 
object (e.g., glass) generate equal but opposite charges due to the 
different electron affinities between two materials. In stage (ii), when 
the external object approaches the PDMS dielectric layer, the built-in 
electric field of the triboelectric sensor changes with decreasing dis-
tance, resulting in free electrons flowing from the ground to the elec-
trodes and a current being generated in the circuit. As a result, a voltage 
signal across the resistor can be detected and recorded. At stage (iii), the 
external object and the PDMS dielectric layer come into contact, and at 
this time, the potential difference measured across the resistor would 
reach its maximum. When the external object separates from the 
dielectric layer, free electrons flow back from the electrode to the 
ground as the distance increases, generating a reverse voltage signal. 
Eventually, when the external object returns to its original position, the 
charges on both sides are rebalanced gradually. The charge transfer 
process for the triboelectric sensor with a negative charge external ob-
ject is illustrated in Note S1. To visualize the potential distribution of the 
triboelectric sensor array and the external object during the working 
process, a finite element analysis with the COMSOL software is per-
formed, as shown in Fig. 2c, (touchless sensing), Fig. 2g (tactile 
perception), and Fig. S3 (the external object rotates around the EM- 
Finger). 

A measurement system is designed and utilized to investigate the 
triboelectric and visuotactile performance of the EM-Finger. The sche-
matic diagrams are shown in Fig. S4 and Fig. S5, and a demonstration of 
the working process of the system is shown in Video S1. The EM-Finger 
is attached to a force sensor via a 3D-printed connector. And a 
10 × 10 × 0.3 cm aluminum (Al) plate is fixed on a linear motor which 
takes the Al plate for reciprocating motion. Meanwhile, the touchless 
sensing sensitivity of the triboelectric sensor array is also tested on the 
measurement system. The voltage signal output by the triboelectric 
sensor can be influenced by the movements of external objects (Fig. 2d). 
The voltage of the triboelectric sensor steadily increases as the positively 
charged Al plate approaches it. Conversely, when the Al plate moves 
away, an opposite voltage signal will be generated by the sensor. 
Apparently, the output voltage can be affected by the distance between 
the EM-Finger and the external object. As the distance increases from 1 
to 20 cm, the voltage decreases exponentially from 55.5 mV to 1.1 mV 
(Fig. 2e). And the voltage signals recorded from the three triboelectric 

sensors (E1, E2, E3) will be changed with the angle (0◦, 120◦, 360◦) 
between the external object and the EM-Finger (Fig. 2f), indicating that 
the touchless sensing of the EM-Finger is omnidirectional and can locate 
external objects in space (Fig. S6). Based on the polarity and amplitude 
of the voltage signals recorded from the triboelectric sensor array, the 
movement information of the external objects can be analyzed. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2023.108790. 

Furtherly, the effect of the external objects with different materials 
on the output voltage of the triboelectric sensor is investigated. Different 
waveforms generated by the triboelectric sensor under the influence of 
five different materials are compared and analyzed (Fig. 2h). Since wood 
has the highest electropositivity among the five materials, the tribo-
electric sensor will have the largest output when the wood contacts it. 
While the fluorinated ethylene propylene (FEP) film with a high elec-
tronegativity approaches the EM-Finger, a waveform with the opposite 
direction can be generated. The experiment results indicate that the 
amplitude and polarity of the voltage signal generated by the tribo-
electric sensor are affected by the intrinsic property of the external ob-
ject. In addition, the voltage of the triboelectric sensor increases from 
0.3 V to about 1.2 V as the contact pressure increases from 2 N to 10 N 
(Fig. 2i), while the voltage generated during the contact process is 
significantly larger than that generated in the non-contact process 
(Fig. S7). Under the same contact condition with a pressure of 4 N, the 
triboelectric sensor works for 10,000 cycles in 3.5 h. As shown in Fig. 2j, 
the comparison of the voltage signals before and after the working 
process indicates that the triboelectric sensor has good durability. 

Notably, in contact situation, the voltage signal of the triboelectric 
sensor is affected by both the polarity of the object material and the 
contact pressure, resulting in difficulty for decoupling the pressure and 
material information. To address this issue, the visuotactile sensing 
approach is utilized to record the different pressures in real time. And 
several experiments are conducted to demonstrate that the EM-Finger 
can be used to identify the contact pressure and surface texture of 
external objects. Fig. 2k and l show the schematic diagram of the elas-
tomer and the variation of the internal markers in their locations and 
areas when the EM-Finger is subjected to different forces (normal and 
shear forces). The strain and stress distribution of the elastomer when in 
contact with an external object is also analyzed using finite element 
analysis (Fig. S8). And a micro camera with a sampling rate of 30 frames 
per second and a resolution of 640 × 480 pixels is utilized to record the 
images of the elastomer and markers throughout the whole working 
process. When the external object contacts with the EM-Figure in 
different positions, the images of the elastomer and markers are shown 
in Fig. S9. The results demonstrate that the EM-Finger can perceive the 
contact position on the entire 3D surface. Furthermore, under different 
pressures, the markers in the fingertip show differences in their areas 
and locations (Fig. 2m and Fig. S10). By analyzing these changes via 
advanced image pre-processing method, multidirectional forces can be 
detected and identified by the system (Table S1 and Video S2). In 
addition, the excellent durability of the visuotactile sensor for force 
sensing is shown in Fig. S11. When an external force is applied on the 
EM-Figure by a patterned pen, the captured tactile image can provide a 
clear visualization of the pen’s textural information (Fig. 2n). And more 
texture perception experiments for other external objects are shown in 
Fig. S12. Such results intuitively demonstrate that the EM-Finger can be 
used for omnidirectional touchless sensing and multimodal tactile 
perception. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2023.108790. 

2.3. Deep-learning-enabled material identification system 

In order to effectively interact with the real world, the EM-Finger 
should possess similar abilities to human skin in inferring the material 
types of contacted objects. However, identifying the material type of an 
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object is a great challenge for human skin, especially for objects with 
similar surfaces (Fig. 3a). It is worth noting that the triboelectric sensor 
has made significant progress in material recognition applications[41, 
42], but the output signal is still vulnerable environmental factors, such 
as varying contact forces. This interference hinders the direct applica-
tion of triboelectric sensors in practical sensing tasks. Nonetheless, by 
combining the proposed EM-Finger with a deep learning-assisted ma-
terial identification system, we can recognize the material types of 
common objects in real-time, exhibiting outstanding capabilities beyond 
human skin perception. We design an experimental system comprising 
the EM-Finger and a linear motor. We select 18 types of materials 
(Fig. 3b), including acrylic, glass, and resin, etc. With the aid of the 
acquisition module, we are able to precisely record the triboelectric and 
visuotactile signals. Additionally, during the experiment, we extract 
pressure information from the visuotactile images. 

We collect the triboelectric and pressure signals generated while the 
EM-Finger contacts with test materials under four predetermined pres-
sures (2 N, 4 N, 6 N, 8 N) (Fig. 3c). To enhance the accuracy of material 
identification and extract more hidden features from the signals, we 
introduce deep learning architecture. The flowchart for material iden-
tification is shown in Fig. 3d. First, after preprocessing the data collected 
from known materials, we divide the data into training data and test 
data at a ratio of 7:3 and then combine it with a long short-term memory 
full convolutional network (LSTM-FCN) model, and iterate continu-
ously. As the amount of training data increases, the deep learning model 
gradually approaches the actual situation. 

As shown in Fig. 3e, we have achieved high accuracy in material 
perception for all 18 tested materials using the triboelectric and pressure 
signals. We also compare the recognition learning curves with and 
without the pressure signal (Fig. 3f), and the results show that the ma-
terial recognition accuracy increased from 67.4 % to 94.4 % after fusing 
the pressure signal (Fig. S13). The interface of the tactile sensing system 
for material recognition can display the triboelectric and pressure sig-
nals, and the identification result can be displayed on the computer in 
real-time (Fig. 3g and Video S3). 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2023.108790. 

2.4. HRI and feedback platform based on EM-finger 

To further explore an integrated interaction method between robots 
and humans, we propose a flexible interface with the EM-Finger 
(Fig. 4a). Combined with the touchless and tactile sensing capabilities, 
we demonstrate that humans could touchless control the robotic arm in 
3D space with an FEP film. When manipulating objects, the EM-Finger 
could provide multimodal tactile perception (Video S4 and S5). Here, 
we mount the EM-Finger on an AUBO i5 robotic arm and record bimodal 
information during the entire interaction. The EM-Finger’s three side- 
electrodes (E1, E2, E3) can encode three-channel triboelectric signals 
into the interaction commands between the operator and the robotic 
arm. At the same time, the triboelectric signal generated by the E4 
electrode and the pressure extracted from the visuotactile sensor will be 
used for object material identification during the contact process of the 
EM-Finger with the object. The detailed robotic arm interaction strategy 
can be found in Fig. S14 and Table S2. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2023.108790. 

The bimodal signals and the recognition results (force, material, and 
texture) are displayed in real-time on a computer screen for easy visi-
bility to the operator. Fig. 4b shows the effect of the obstacle occlusion 
between the human and the EM-Finger on the signal. In this experiment, 
a 50 × 50 × 0.5 cm acrylic plate is placed between the operator and the 
EM-Finger, where the distance between the operator and the EM-Finger 
is about 10 cm. The obstacle causes a significant reduction in the 
touchless signal. However, the EM-Finger still clearly detects the inter-
action command, indicating that the electrostatic induction exhibits 

strong resistance to obstacles (Video S6). 
Supplementary material related to this article can be found online at 

doi:10.1016/j.nanoen.2023.108790. 
Fig. 4c illustrates the peak values of the touchless signal generated by 

channel E1, E2, and E3 during 50 repetitions of sliding the human finger 
close to the E1 electrode. The signal obtained from the E1 electrode 
consistently exhibits higher amplitudes than the other two channels, 
indicating that EM-Finger can sense spatial motion from different di-
rections. In addition, the signals from the three channels are encoded to 
six corresponding motion commands, enabling the control of the robot 
arm in 3D space (Fig. 4d). The human interactively operates the robotic 
arm to accurately identify the object and move it to the assigned 
working area. The whole interaction process can be divided into five 
steps (Fig. 4e). 

In step (i), the operator’s finger slides downward in the E1 direction 
without contact, and the three channels generate touchless signals while 
the pressure signal remains zero (Fig. 4f). In step (ii), according to the 
motion command recognized by the computer, the robotic arm is 
controlled to move horizontally in the direction of E1, and the operator 
slides again until the arm is adjusted to a position vertically above the 
measured object. In step (iii), the robotic arm moves downward to 
identify the object, the E4 electrode generates a larger triboelectric 
signal, and the pressure signal increases sharply for a short time. As the 
robotic arm moves upwards, the EM-Finger separates from the object, 
and a lower peak appears in the triboelectric signal, while the pressure 
signal becomes zero, enabling correct material identification based on 
the bimodal information. In step (iv), the arm moves downward and 
contacts the correctly identified object, and the triboelectric signal and 
multidirectional force signal (normal and shear forces) increase sud-
denly at the moment of contact (Fig. S15). After that, the arm keeps 
contact with the object and pushes it to the assigned working area, while 
the triboelectric signal is zero, and the multidirectional force signal 
changes continuously. In step (v), the robotic arm moves upward, the 
EM-Finger is separated from the object, and the triboelectric signal 
generates a lower peak while the pressure signal returns to zero. Finally, 
we successfully touchless control the robotic arm equipped with EM- 
Finger to identify and manipulate objects. The experimental results 
demonstrate an interaction paradigm between humans and robots 
through EM-Finger, which is constructed with simplicity and efficiency. 

2.5. Underwater remote control and exploration 

The complexity of the underwater environment has long been the 
barrier that prevents the further application of tactile sensing [43,44]. 
As depicted in Fig. 5a, the platypus can perceive the weak bioelectric 
signal generated by prey through its abundant electroreceptors. This 
ability allows the platypus to determine the location of surrounding 
preys. Taking full advantage of EM-Finger’s compact structure and 
flexible electrosensory capabilities, a remote control and exploration 
system for underwater applications are constructed using a controllable 
electric field source (Fig. 5b). In this system, the spring-assisted tribo-
electric nanogenerator (S-TENG) generates an electrical signal from a 
mechanical source and can transmit through the water to control un-
derwater unmanned robots for exploration activities. Refer to Note S2 
for the specific working principle of S-TENG. By controlling an external 
triboelectric nanogenerator, different electrical signals can be propa-
gated underwater [45], For example, setting larger peaks as “1” repre-
sents a stronger pressing force, while setting smaller peaks as “0” 
represents a lighter pressing force. Therefore, we can use 
mechanically-driven S-TENG to generate artificial underwater electrical 
fields that mimic the bioelectric fields and achieve remote control of 
underwater robots through the water as the medium. To test the per-
formance of remote underwater control, the transmitting electrode in 
water is connected to the Al electrode of the S-TENG. In contrast, the 
other electrode of the S-TENG is grounded, allowing the S-TENG to 
operate in single-electrode mode, as shown in the experimental setup 
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Fig. 3. Deep-learning-enabled tactile material identification system. (a) Schematic diagram of a robotic hand with integrated EM-Finger simulating human hand for 
material detection and (b) the corresponding 18 test materials. (c) Triboelectric signal and pressure signal when it detected materials in different pressure. (d) Flow 
diagram of machine learning for material identification. (e) The corresponding confusion map for 18 materials. (f) The prediction accuracy of material types under 
different data inputs, with or without pressure information. (g) Real-time display of the perception results for glass by using the constructed material percep-
tion system. 
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Fig. 4. Demonstration of the non-contact interaction and feedback system by the smart finger. (a) Schematic diagram of the non-contact interaction movement 
experiment with the EM-Finger through the FEP film at the tip of the human finger. (b) Influence of obstacle between the human hand and sensor on the signal. (c) 
Sliding on the side close to the E3 electrode, the signal output amplitude of each electrode of the EM-Finger is under 50 times sliding. (d) Interaction sensing data was 
collected by the three-channel electrodes from six motions. (e) Signal curves and (f) demonstration photograph of a robotic arm equipped with the EM-Finger 
interactively controlling, detecting, and moving a glass cube object. 
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schematic in Fig. S16. For the specific working principle of the under-
water remote control, see Note S3. 

Fig. 5c shows the influence of different distances between the 
transmitting electrode and the EM-Finger on underwater signal 

propagation. The peak value of the received signal in the water tank 
decreases as the distance between the transmitting electrode and the 
EM-Finger increases. When the distance between them increases to 
60 cm, the signal’s peak value hardly decreases. Additionally, the ability 

Fig. 5. Demonstration of the underwater remote interaction and exploration. (a) A schematic diagram describing the mechanism of artificial receptors that mimic the 
sensory system of the platypus for underwater remote control. In an underwater experiment, signal generated by an artificial electric field used to mimic 
bioelectricity are transmitted in the water. (b) Diagram of the button-type TENG remote control unmanned underwater probe with robotic gripper. (c) Variation of 
the peak values on the receiving voltage signal with the distance between the transmitting electrodes and EM-Finger. (d) Influence of an obstacle on the voltage 
signal. (e) Directional pattern evaluation of the EM-Finger in water. (f) Comparison between the original command signal and received signal in water for motion 
control. (g) The schematic diagram of underwater wireless remote robotic gripper control and object recognition. (h) Photographs of various types of shells and their 
corresponding tactile images (scale bar: 2 cm). 

S. Mu et al.                                                                                                                                                                                                                                       



Nano Energy 116 (2023) 108790

9

to keep signal robustness is also critical for communication requirements 
in complex underwater. As shown in Fig. 5d, even with obstacles placed 
in the water tank, the received signal waveform remains the same as the 
original signal, indicating the robustness of the polarized electric field 
against obstacles. Fig. 5e shows the influence of different angles (in the 
horizontal direction) of the transmitting electrode on the underwater 
signal. With the change of signal incident angle, the voltage signal re-
mains stable, indicating that the underwater electrical reception ability 
is omnidirectional. Fig. 5f compares the signal from the original S-TENG 
with the signal in water, showing significant attenuation but maintain-
ing a consistent waveform with the original signal. The voltage signal 
generated by mechanical pressing of the S-TENG can be encoded as 
control commands, enabling underwater remote control for up, down, 
left, and right movements. 

Based on these results, we install the EM-Finger on the end of the 
robotic gripper (Fig. S17) to achieve remote underwater interaction and 
high-resolution tactile perception, mimicking the feeding behavior of 
platypus using its mouth to prey in mud, thus determining relevant 
environmental information for underwater tasks. By controlling the 
movement of the robotic gripper in water and utilizing different tactile 
perception information, successful object recognition and manipulation 
are achieved underwater (Fig. 5g). It should be noted that EM-Finger 
provides high-resolution tactile information even underwater. Fig. 5h 
shows the tactile image while grasping bivalves, which can recognize 
the typical features of shells based on the high-resolution visuotactile 
image. These features are the main characteristics of various bivalves 
(Fig. S18 and Video S7). This process mimics the entire process of a 
platypus feeding underwater using its electroreceptors and 
mechanoreceptors. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2023.108790. 

3. Conclusion 

The rich tactile perception and interactive capabilities of robots are 
of great significance in practical applications. In this study, inspired by 
the platypus beak sense, the electro-mechanosensory finger is designed, 
which is composed of a triboelectric sensor array and a finger-shaped 
visuotactile sensor. To improve the integration of EM-Finger, an LMPC 
layer simultaneously serves as the electrode layer of the triboelectric 
sensor array and the reflector of the visuotactile sensor. Based on contact 
electrification and electrostatic induction effects, the triboelectric sensor 
array can encode both touchless and tactile interactions into voltage 
signals in the air, and detect the electrical stimuli underwater for 
amphibious wireless communication. Meanwhile, the high-resolution 
visuotactile sensor can provide multimodal tactile information, 
including contact pressure and surface texture. With the deep learning 
architecture fusing the triboelectric and visuotactile signals, the identi-
fication accuracy of material under varying forces is significantly 
improved to 94.4 %. The omnidirectional touchless sensing and multi-
modal tactile perception of the EM-Finger make it possible for robots to 
carry out remote control and object recognition in the air. In addition, 
the integrated system can perform touchless HRI and high-resolution 
tactile sensing in complex underwater environments, even in the pres-
ence of obstacles. 

Compared with other existing approaches for multisensory sensing, 
the bimodal EM-Finger exhibits advantages in high integration and 
portability (refer to Table S3 and Table S4). Although more computing 
resources are consumed when processing visuotactile data, high- 
resolution tactile perception is still essential when performing some 
complex manipulation and identification tasks. Going forward, more 
challenging and practical applications can be realized by building in-
terfaces between EM-Finger and robots. For example, it can help robots 
carry out exploration and manipulation in situations where vision is 
obstructed. At the same time, the highly integrated and finger-shaped 
structural design may enhance the humanoid robot’s perception of the 

external environment. We envision that the fusion of EM-Finger and 
intelligent motion control of robots will further facilitate the develop-
ment of the enhanced HRI application. 

4. Methods 

4.1. Fabrication process of soft transparent fingertip 

A 3D-printed mold with a semi-elliptical groove was prepared for 
fabricating the silicone-based transparent elastomer. The elastomer was 
fabricated with the mixture of PDMS (Sylgard 184, Dow Corning, USA, 
weight ratio = 10:1) and transparent silicone (Shinbon, China) at a ratio 
of 2:1. The mixture was first degassed in a vacuum chamber for 10 min 
to avoid air bubbles, and then cured at 60 ◦C for 3 h. After this, a 3D- 
printed mask with three markers was placed on the cured elastomer, 
then three black markers (silicone doped with black pigment) were 
added in turn. After the second curing, the unit with the markers is 
complete and ready for applying a liquid metal-based conductive and 
reflective layer. 

4.2. Fabrication process of the triboelectric sensor array with liquid metal 

We added 1.5 g of EGaIn (Ga: In = 4:1, Zhongchuang Alloy, China) 
and 1 g 3 wt % PVP (Aladdin, China) decanol (98 %, MACKLIN, China) 
solution to a 5 mL EP tube and sonicated (Lichen ultrasonic cell dis-
ruptor, China) the tube in an ice-water bath for 5 min (amplitude of 20 
%, 5 s on and 5 s off in each cycle) to fabricate the liquid metal-polymer 
suspension microparticles. We added the prepared composite into the 
airbrush (0.5 mm caliber) and sprayed it on the transparent fingertip 
with a patterned mask. Then, we placed the fingertip at 50 ◦C for 1 h to 
evaporate the solvent and remove the mask. To cover the area between 
the patterned liquid metal, non-conductive silver-grey silicone pigments 
were sprayed onto the cured fingertip. The PDMS was drop-casted onto 
the patterned liquid metal and then cured at room temperature for four 
hours to finish the encapsulation. 

4.3. Assembly and connection of EM-Finger 

Components for connection or assembly are 3D printed with poly-
lactic acid (PLA) filament. Noteworthy, considering the different stiff-
ness of the flexible elastomer and the 3D printed part, we use silicone 
adhesive (Sil-Proxy, Smooth-On, USA) to connect them. 

4.4. Characterization of the triboelectric sensor for touchless/tactile 
sensing 

An electrometer measured the signal outputs in the triboelectric 
sensor’s characterization (Keithley, 6514, USA). The multi-channel 
signals were conducted by a synchronous data acquisition module 
(National Instruments, USB-6356, USA) and displayed by the LabVIEW 
software. The basic movement platform used a linear motor (LinMot, 
E1100, Switzerland) to simulate the manipulator for contact and sepa-
ration (initial distance, 40 cm). The pressure during contact is measured 
by a high-precision pressure sensor (ATI Industrial Automation, Mini40, 
USA) and recorded by the accompanying software. 

4.5. Finite element analysis 

To verify the theoretical accuracy of our design, we conducted 
multiphysics simulations, which encompassed both motion and electric 
fields. The simulations were performed using the COMSOL Multiphysics 
software, specifically utilizing its electric field module and structural 
mechanics module. To simulate the sensor’s deformation, we con-
structed a 3D model of the sensor within COMSOL and employed the 
structural mechanic’s module to analyze how the sensor deformed under 
various external forces. Regarding the potential distribution of the 
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sensor, we assumed that the sensor was fully charged, possessing the 
maximum charge that could be accumulated on its effective detection 
surface. In our 3D simulations, we set the surrounding free space to a 
distance of 15 m, ensuring that the free space was practically infinite 
compared to the sensor. 

4.6. Deep learning enabled by LSTM-FCN 

The LSTM-FCN model is often used to process spatial features in 
time-series data. It combines the capabilities of LSTM, which can capture 
long-term dependencies, and FCN, which can efficiently extract spatial 
features from data. Here we built the LSTM-FCN model based on the 
Pytorch library. After continuous validation and iteration on the training 
set data, the pre-trained model is validated on the test data. In addition, 
we conducted further experiments under consistent hyperparameters, 
evaluating the learning capability of the LSTM-FCN model on both 
single triboelectric and multimodal signals. 
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